Skip to main content

Amino resins.

Amino resins

  • Amino resins are condensation products obtained by reaction of formaldehyde with nitrogen bearing compounds such as aniline, amides. For example urea formaldehyde, melamine formaldehyde.
  • Urea formaldehyde is prepared by condensation reaction between urea and formaldehyde in acidic or alkaline medium.
  • The first product formed during the formation of resin is monomethylol and dimethylol ureas.
    Synthesis of amino resins step 1.
  • Polymerisation can take place from mono or di methylol urea or possibly through both with the formation of long chain.
    Synthesis of amino resins step 2
  • The formation of melamine formaldehyde resin is similar to formation of urea formaldehyde.
  • Amino resins are clear and colourless.
  • They are harder and have high strength but lower heat and moisture resistance than phenolics.
  • The melamine formaldehyde resins have high moisture, heat and ageing resistance than urea formaldehyde resins but are usually costly.
  • Both urea formaldehyde and melamine formaldehyde resins are used as adhesives.
  • Amino resins are also used as coatings and laminates. Next
    Uses of amino resins.

Comments

Popular posts from this blog

Determination of molecular weight by osmotic pressure method

Determination of molecular weight by osmotic pressure method. Osmotic pressure method is also called membrane osmometry. This method is widely used to determine the number average molecular weight of polymers. This method is based on the phenomenon of osmosis. If a pure solvent is separated from a solution through a semipermeable membrane, due to concentration (chemical potential) difference between the solvent and solution, the solvent will flow into the solution through semipermeable membrane. The pressure applied on the solution to completely stop the flow of solvent into it through semipermeable membrane is called osmotic pressure. The theory of osmotic pressure also applies to a solution of polymers. Ordinary solution obeys Van't Hoff equation i.e π=cRT/M Where π is osmotic pressure, c  is concentration in mass per unit volume, R is gas constant, T is temperature and M is molar mass. The polymer solution are non ideal. Taking into account their deviation and us...

Polypropylene (PP)

Polypropylene (PP). Polypropylene (PP) is also known as polypropene. Polypropylene is made from the polymerisation of propylene gas in the presence of Zeiglar Natta catalyst or metallocene catalyst. Polypropylene. Thus propene (or propylene) is the monomer of polypropylene. Polypropylene is a highly flammable material. It is sensitive to microbial attacks, such as bacteria and mold. It exhibits excellent resistance to diluted and concentrated acids, alcohols and bases. Polypropylene is used to make lunch boxes, margarine containers, yogurt pots, syrup bottles etc. Disposable syringes is the most common medical application of polypropylene. Polypropylene rope and twine are very strong and moisture resistant very suitable for marine applications. Polypropylene, highly colorfast, is widely used in manufacturing carpets, rugs and mats. Uses of Polypropylene. Questions on polypropylene; Q1) What is polypropylene? Ans) Polypropylene is a polymer of propylen...

Polylactic acid/PLA.

Polylactic acid/PLA. Polylactic acid is a biodegradable thermoplastic polymer . Polylactic acid is obtained from lactic acid monomer. Polylactic acid. Polylactic acid is stable to UV radiation. Polylactic acid has good resistance to moisture. Polylactic acid has good elasticity. Polylactic acid is an aliphatic polyester . It can be used as a food packaging polymer. Polylactic acid is suitable for textile fibre applications such as shirts, carpets, sportswear etc. Polylactic acid is used in implants and medical devices (screws, sutures etc). Polylactic acid is suitable for use in floor mats. Uses of Polylactic acid. Questions on Polylactic acid/PLA; Q1) What is Polylactic acid? Ans) Polylactic acid is a biodegradable thermoplastic polymer. Q2) What is the monomer of Polylactic acid? Ans) Polylactic acid is obtained from lactic acid monomer. Q3) Write some properties of Polylactic acid? Ans) Some properties of Polylactic acid are given below; ...